Difference between revisions of "Price Indexes"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Line 1: | Line 1: | ||
<math>  | <math>  | ||
   \operatorname{erfc}(x) =  |    \operatorname{erfc}(x) =  | ||
| − |    \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =    | + |    \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =  | 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}  |    \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}  | ||
  </math>  |   </math>  | ||
Revision as of 14:47, 9 August 2011
\( \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} \)